
Extracting Purely Functional Contents

from Logical Inductive Types

David Delahaye, Catherine Dubois,
and Jean-Frédéric Étienne

CEDRIC/CNAM-ENSIIE, Paris, France,
David.Delahaye@cnam.fr, dubois@ensiie.fr,

etien_je@auditeur.cnam.fr

Abstract. We propose a method to extract purely functional contents
from logical inductive types in the context of the Calculus of Inductive
Constructions. This method is based on a mode consistency analysis,
which veri�es if a computation is possible w.r.t. the selected inputs/out-
puts, and the code generation itself. We prove that this extraction is
sound w.r.t. the Calculus of Inductive Constructions. Finally, we present
some optimizations, as well as the implementation designed in the Coq
proof assistant framework.

1 Introduction

The main idea underlying extraction in proof assistants like Isabelle or Coq is to
automatically produce certi�ed programs in a correct by construction manner.
More formally it means that the extracted program realizes its speci�cation.
Programs are extracted from types, functions and proofs. Roughly speaking, the
extracted program only contains the computational parts of the initial speci�ca-
tion, whereas the logical parts are skipped. In Coq, this is done by analyzing the
types: types in the sort Set (or Type) are computationally relevant while types in
sort Prop are not. Consequently, inductively de�ned relations, implemented as
Coq logical inductive types, are not considered by the extraction process because
they are exclusively dedicated to logical aspects. However such constructs are
widely used to describe algorithms. For example, when de�ning the semantics
of a programming language, the evaluation relation embeds the de�nition of an
interpreter.

Although inductive relations are not executable, they are often preferred
because it is often easier to de�ne a relational speci�cation than its corresponding
functional counterpart involving pattern-matching and recursion. For example,
in Coq, it is easier to de�ne the relation "the terms t and u unify with s as a most
general uni�er" than de�ning the function that computes the most general uni�er
of t and u if it exists. In this case, the di�culty is to prove the termination of the
function while simultaneously de�ning it. Moreover, proof assistants o�er many
tools to reason about relational speci�cations (e.g. elimination, inversion tactics)
and the developer may prefer the relational style rather than the functional style,

even though recent work (e.g. in Coq, functional induction or recursive de�nition)
provide a better support for de�ning functions and reasoning about them.

Based on these observations, our aim is to translate logical inductive spec-
i�cations into functional code, with an intention close to the one found in the
Centaur [3] project, that is extracting tools from speci�cations. Another moti-
vation for extracting code from logical inductive speci�cations is to get means
to execute these speci�cations (if executable), in order to validate or test them.
Better still, in a formal testing framework, the extracted code could be used as
an oracle to test a program independently written from the speci�cation.

In this paper, we propose a mechanism to extract functional programs from
logical inductive types. Related work has been done on this subject around
semantics of programming languages, for example [3, 8, 1, 4, 12] and [2] in a
more general setting. Like [2], our work goes beyond semantic applications,
even though it is a typical domain of applications for such a work. In addi-
tion, our extraction is intended to only deal with logical inductive types that
can be turned into purely functional programs. This is mainly motivated by the
fact that proof assistants providing an extraction mechanism generally produce
code in a functional framework. Thus, we do not want to manage logical induc-
tive speci�cations that would require backtracking, that is more a Prolog-like
paradigm. In that sense, our work separates from Centaur [3], Petterson's RML
translator [8] and Berghofer and Nipkow's approach [2]. The �rst one trans-
lates Typol speci�cations, which are inductively de�ned semantic relations, into
Prolog programs. RML is also a formalism to describe natural semantics of pro-
gramming languages, and the corresponding compiler produces C programs that
may backtrack if necessary. Finally, Berghofer and Nipkow's tool produces code
that can compute more than one solution, if any. We can also mention the use
of Maude [12] to animate executable operational semantic speci�cations, where
these speci�cations are turned into rewriting systems.

To turn an inductive relation into a function that can compute some results,
we need additional information. In particular, we need to know which arguments
are inputs and which arguments are outputs. This information is provided by the
user using the notion of modes. Furthermore, these modes are used to determine
if a functional computation is possible, in which case we say that the mode is
consistent. Otherwise, the functional extraction is not possible and is rejected by
our method. In order to make functional computations possible, some premises
in the types of constructors may have to be reordered. The notion of mode, going
back actually to attribute grammars [1], is fairly standard, especially in the log-
ical programming community. For example, the logical and functional language
Mercury [7] requires mode declarations to produce e�cient code. Similar mode
systems have already been described in [4, 2, 9].

The paper is organized as follows: �rst, we informally present our extraction
mechanism with the help of some examples; next, we formalize the extraction
method itself (in particular, the mode consistency analysis and the code gener-
ation) and prove its soundness; �nally, we describe our prototype developed in
the Coq proof assistant framework and discuss some optimizations.

2 Informal presentation

In this section, we present how our functional extraction must work on some
examples. For these examples, we use the Coq framework with, in particular, its
syntax and OCaml [11] as one of its target languages for extraction. Our general
approach is the following:

1. the user annotates his/her logical inductive type with a mode that speci�es
which arguments are inputs, the others being considered as outputs;

2. a mode consistency analysis is performed to determine if the extraction is
possible w.r.t. the provided mode;

3. if the previous analysis is successful, the logical de�nition is translated into
a functional program.

This process may be recursive and may call the regular extraction mechanism
to extract code from functions or proofs.

A mode can be seen as the computational behavior of a logical inductive
type. It is de�ned as a set of indices denoting the inputs of the relation. For
example, let us consider the predicate add that speci�es the addition of two
natural numbers, i.e. given three natural numbers n, m and p, (add n m p)
de�nes that p is the result of the addition of n and m. This predicate is de�ned
as follows:

Inductive add : nat → nat → nat → Prop :=
| addO : forall n, add n O n
| addS : forall n m p, add n m p → add n (S m) (S p).

The mode {1, 2} indicates that we consider n and m as inputs and we would
like to compute p. The extracted function is the expected one, de�ned by pattern-
matching on both arguments (actually only the second one is signi�cant):

let rec add p0 p1 = match p0, p1 with
| n, O → n
| n, S m → let p = add n m in S p
| _ → assert false

We can also propose to extract a function with the mode {2, 3}. Thus, we
obtain a function that performs subtraction:

let rec add p0 p1 = match p0, p1 with
| n, O → n
| S p, S m → add p m
| _ → assert false

Finally the mode {1, 2, 3} means that the three arguments are known and
that we want to produce a function that checks if the triple constitutes a possible
computation or not (as a boolean result):

let rec add p0 p1 p2 = match p0, p1, p2 with
| n, O, m when n = m → true
| n, S m, S p → add n m p
| _ → false

However, with the mode {1, 3}, the extraction is refused, not because of the
mode analysis (which succeeds) but because it would produce a function with
two overlapping patterns, (n,n) (obtained from the type of the �rst constructor
addO) and (n,p) (obtained from the type of the second constructor addS). With
such a con�guration, more than one result might be computed and therefore the
function would not be deterministic, which is incompatible with a proper notion
of function. Extraction with modes involving only one input are refused for the
same reason.

As a last example, let us consider a case where constraints are put on the
results, e.g. in the eval_plus constructor the evaluation of a1 and a2 must map
to values built from the N constructor:

Inductive Val : Set := N : Z → Val | ...
Inductive Expr : Set := V : Var → Expr | Plus : Expr → Expr → Expr.

Inductive eval : Sigma → Expr → Val → Prop :=
| eval_v : forall (s : Sigma) (v : Var), eval s (V v) (valof s v)
| eval_plus : forall (s : Sigma) (a1 a2 : Expr) (v w : Z),

eval s a1 (N v) → eval s a2 (N w) → eval s (Plus a1 a2) (N (v + w)).

where Sigma is an evaluation context and valof is a function looking for the
value of a variable in an evaluation context.

With the mode {1, 2}, the extracted function is the following:

let rec eval s e = match s, e with
| s , V v → valof s v
| s , Plus (a1, a2) →
(match eval s a1 with

| N v →
(match eval s a2 with

| N w → N (zplus v w)
| _ → assert false)

|_ → assert false)

where valof and zplus are respectively the extracted functions from the de�-
nitions of valof and the addition over Z.

Regarding mode consistency analysis, detailed examples will be given in the
next section.

3 Extraction of logical inductive types

The extraction is made in two steps: �rst, the mode consistency analysis tries to
�nd a permutation of the premises of each inductive clause, which is compatible
w.r.t. the annotated mode; second, if the mode consistency analysis has been
successful, the code generation produces the executable functional program. Be-
fore describing the extraction method itself, we have to specify which inductive
types we consider and in particular, what we mean exactly by logical inductive
types. We must also precise which restrictions we impose, either to ensure a
purely functional and meaningful extraction, or to simplify the presentation of

this formalization, while our implementation relaxes some of these restrictions
(see Section 5).

3.1 Logical inductive types

The type theory we consider is the Calculus of Inductive Constructions (CIC for
short; see the documentation of Coq [10] to get some references regarding the
CIC), i.e. the Calculus of Constructions with inductive de�nitions. This theory
is probably too strong for what we want to show in this paper, but it is the
underlying theory of the Coq proof assistant, in which we chose to develop the
corresponding implementation. An inductive de�nition is noted as follows (in-
spired by the notation used in the documentation of Coq):

Ind(d : τ , Γc)

where d is the name of the inductive de�nition, τ a type and Γc the context
representing the constructors (their names together with their respective types).
In this notation, two restrictions have been made: we do not deal with param-
eters1 and mutual inductive de�nitions. Actually, these features do not involve
speci�c technical di�culties. Omitting them allows us to greatly simplify the
presentation of the extraction, as well as the soundness proof in particular. Also
for simpli�cation reasons, dependencies, higher order and propositional argu-
ments are not allowed in the type of an inductive de�nition; more precisely, this
means that τ has the following form:

τ1 → . . . τn → Prop

where τ i is of type Set or Type, and does not contain any product or de-
pendent inductive type. In addition, we suppose that the types of constructors
are in prenex form, with no dependency between the bounded variables and no
higher order; thus, the type of a constructor is as follows:∏n

i=1 xi : Xi.T1 → . . . → Tm → (d t1 . . . tp)

where xi 6∈ Xj , Xi is of type Set or Type, Ti is of type Prop and does not
contain any product or dependent inductive type, and ti are terms. In the fol-
lowing, the terms Ti will be called the premises of the constructor, whereas the
term (d t1 . . . tp) will be called the conclusion of the constructor. We impose
the additional constraint that Ti is a fully applied logical inductive type, i.e. Ti

has the following form:

di ti1 . . . tipi

1 In CIC, parameters are additional arguments, which are shared by the type of the
inductive de�nition (type τ) and the types of constructors (de�ned in Γc).

where di is a logical inductive type, tij are terms, and pi is the arity of di.
An inductive type verifying the conditions above is called a logical inductive

type. We aim to propose an extraction method for this kind of inductive types.

3.2 Mode consistency analysis

The purpose of the mode consistency analysis is to check whether a functional
execution is possible. It is a very simple data-�ow analysis of the logical inductive
type. We require the user to provide a mode for the considered logical inductive
type, and recursively for each logical inductive type occurring in this type.

Given a logical inductive type I, a mode md is de�ned as a set of indices
denoting the inputs of I. The remaining arguments are the output arguments.
Thus, md ⊆ {1, . . . , aI}, where aI is the arity of I. Although a mode is de�ned
as a set, the order of the inputs in the logical inductive type is relevant. They
will appear in the functional translation in the same order.

In practice, it is often the case to use the extraction with, either a mode
corresponding to all the arguments except one, called the computational mode, or
a mode indicating that all the arguments are inputs, called the fully instantiated
mode. The formalization below will essentially deal with these two modes with
no loss of generality (if more than one output is necessary, we can consider that
the outputs are gathered in a tuple).

In order to make functional computations possible, some premises in a con-
structor may have to be reordered. It will be the case when a variable appears
�rst in a premise as an input and as an output in another premise written after-
wards. For a same logical inductive type, some modes may be possible whereas
some others may be considered inconsistent. Di�erent mode declarations give
di�erent extracted functions.

Given M, the set of modes for I and recursively for every logical inductive
type occurring in I, a mode md is consistent for I w.r.t. M i� it is consistent
for Γc (i.e. all the constructors of I) w.r.t. M. A mode md is consistent for
the constructor c of type Πn

i=1xi : Xi.T1 → . . . → Tn → T w.r.t. M, where
T = d t1 . . . tp, i� there exist a permutation π and the sets of variables Si, with
i = 0 . . .m, s.t.:

1. S0 = in(md, T);
2. in(mπj , Tπj) ⊆ Sj−1, with 1 ≤ j ≤ m and mπj = M(name(Tπj));
3. Sj = Sj−1 ∪ out(mπj , Tπj), with 1 ≤ j ≤ m and mπj = M(name(Tπj));
4. out(md, T) ⊆ Sm.

where name(t) is the name of the logical inductive type applied in the term t
(e.g. name(add n (S m) (S k)) = add), in(m, t) the set of variables occur-
ring in the terms designated as inputs by the mode m in the term t (e.g.
in({1, 2}, (add n (S m) (S k))) = {n, m}), and out(m, t) the set of variables
occurring in the terms designated as outputs by the mode m in the term t (e.g.
out({1, 2}, (add n (S m) (S k))) = {k}).

The permutation π denotes a suitable execution order for the premises. The
set S0 denotes the initial set of known variables and Sj the set of known variables
after the execution of the πjth premise (when Tπ1, Tπ2, . . . , Tπj have been
executed in this order). The �rst condition states that during the execution of T
(for the constructor c) with the mode md, the values of all the variables used in
the terms designated as inputs have to be known. The second condition requires
that the execution of a premise Ti with a mode mi will be performed only if the
input arguments designated by the mode are totally computable. It also requires
that mi is a consistent mode for the logical inductive type related to Ti (we have
constrained Ti in the previous section to be a fully applied logical inductive
type). According to the third condition, all the arguments of a given premise Ti

are known after its execution. Finally, a mode md is said to be consistent for c
w.r.t. M if all the arguments in the conclusion of c (i.e. T) are known after the
execution of all the premises.

We have imposed some restrictions on the presence of functions in the terms
appearing in the type of a constructor. To relax these conditions, such as ac-
cepting functions in the output of the premises (see Section 5), in the step j,
we should verify that the function calls are computable, that is to say their
arguments only involve known variables (belonging to Sj−1).

To illustrate the mode consistency analysis, let us consider the logical induc-
tive type that speci�es the big step semantics of a small imperative language.
The evaluation of commands is represented by the relation s `c i : s′, which
means that the execution of the command i in the store s leads to the �nal store
s′. This relation has the type store → command → store → Prop, where store
and command are the corresponding types for stores and imperative commands.
For example, the types of the constructors for the while loop are the following:

while1 : (s `e b : true) → (s `c i : s′) → (s′ `c while b do i : s′′) →
(s `c while b do i : s′′)

while2 : (s `e b : false) → (s `c while b do i : s)

where given a store s, an expression t and a value v, s `e t : v represents the
evaluation of expressions, i.e. the expression t evaluates to v in the store s. For
clarity reasons, we do not indicate the universally quanti�ed variables, which are
the stores s, s′ and s′′, the expression b and the command i.

If the mode {1, 2} is consistent for `e then the mode {1, 2} is consistent for
both while constructors of `c. But considering the typing relation of the simply
typed λ-calculus Γ ` t : τ , denoting that t is of type τ in context Γ and where
Γ is a typing context, t a term and τ a type, the mode {1, 2} is not consistent
for this relation. Actually, this mode is not consistent for the typing of the ab-
straction; the type τ1 in the premise, considered here as an input, is not known
at this step (τ1 /∈ S0):

abs : (Γ , (x : τ1) ` e : τ2) → (Γ ` λx.e : τ1 → τ2)

In the following, we will ignore the permutation of the premises and will
assume that all the premises are correctly ordered w.r.t. to the provided mode.

3.3 Code generation

The functional language we consider as target for our extraction is de�ned as
follows (mainly a functional core with recursion and pattern-matching):

e ::= x | cn | Cn | fail | if e1 then e2 else e3 | e1 e2 | fun x→ e
| rec f x→ e | let x = e1 in e2 | (e1, . . . , en)
| match e with | gpat1→ e1 . . . | gpatn→ en

gpat ::= pat | pat when e

pat ::= x | Cn | Cn pat | (pat1, . . . , patn) | _

where cn is a constant of arity n, to be distinguished from Cn, a constructor of
arity n. Both constants and constructors are uncurri�ed and fully applied. More-
over, we use the notations e1 e2 . . . en for ((e1 e2) . . . en), and fun x1 . . . xn→ e
for fun x1→ . . . fun xn→ e (as well as for rec functions).

Given I = Ind(d : τ , Γc), a logical inductive type, well-typed in a context Γ ,
and M, the set of modes for I and recursively for every logical inductive type
occurring in I, we consider that each logical inductive type is ordered according
to its corresponding mode (with the output, if required, at the last position), i.e.
if the mode of a logical inductive type J is M(J) = {n1, . . . , nJ}, then the nth

1

argument of J becomes the �rst one and so on until the nth
J argument, which

becomes the cth
J one, with cJ = card(M(J)). The code generation for I, denoted

by JIKΓ,M, begins as follows (we do not translate the type τ of I in Γ since this
information is simply skipped in the natural semantics we propose for the target
functional language in Section 4):

JIKΓ,M =
{

fun p1 . . . pcI
→ JΓcKΓ,M,P , if d 6∈ Γc,

rec d p1 . . . pcI
→ JΓcKΓ,M,P , otherwise

where cI = card(M(I)) and P = {p1, . . . , pcI
}.

Considering Γc = {c1, . . . , cn}, the body of the function is the following:

JΓcKΓ,M,P = match (p1, . . . , pcI
) with

| Jc1KΓ,M
| . . .
| JcnKΓ,M
| _ → defaultI,M

where defaultI,M is de�ned as follows:

defaultI,M =
{

false, if cI = aI ,
fail, if cI = aI − 1

where cI = card(M(I)) and aI is the arity of I.
The translation of a constructor ci is the following (the name of ci is skipped

and only its type is used in this translation):

JciKΓ,M = J
∏ni

j=1 xij : Xij .Ti1 → . . . → Timi → (d ti1 . . . tipi)KΓ,M

=


(Jti1K, . . . , JticI

K) → JTi1 → . . . → TimiKΓ,M,contI,M ,
if ti1, . . . , ticI

are linear,

(Jσi(ti1)K, . . . , Jσi(ticI
)K) when guard(σi) →

JTi1 → . . . → TimiKΓ,M,contI,M , otherwise

where σi is a renaming s.t. σi(ti1), . . . , σi(ticI
) are linear, guard(σi) is the

corresponding guard, of the form xij1 = σi(xij1) and . . . and xijk
= σi(xijk

),
with dom(σi) = {xij1 , . . . , xijk

} and 1 ≤ jl ≤ ni, l = 1 . . . k, and contI,M is
de�ned as follows:

contI,M =
{

true, if cI = aI ,
Jtipi

K, if cI = aI − 1

The terms ti1, . . . , ticI
must only contain variables and constructors, while tipi

(if cI = aI−1) can additionally contain symbols of functions. The corresponding
translation is completely isomorphic to the structure of these terms and uses the
regular extraction, presented in [6]. Moreover, we consider that the terms tik and
tjk are not uni�able, for i, j = 1 . . . n and k = 1 . . . cI (otherwise, a functional
extraction may not be possible, i.e. backtracking is necessary or there are several
results).

The right-hand side of the pattern rules is generated with the following
scheme:

JTij → . . . → Timi
KΓ,M,contI,M =

contI,M, if j > mi,

if Jdij tij1 . . . tijcij
K then JTi(j+1) → . . . → Timi

KΓ,M,contI,M

else defaultI,M, if j ≤ mi and cij = aij ,

match Jdij tij1 . . . tijcij
K with

| Jtijaij
K → JTi(j+1) → . . . → Timi

KΓ,M,contI,M

| _ → defaultI,M, if j ≤ mi and cij = aij − 1

where Tij = dij tij1 . . . tijaij , aij is the arity of dij and cij = card(M(Γ (dij))).
We consider that the term tijaij

is linear and does not contain computed variables
or symbols of functions when cij = aij − 1 (in this way, no guard is required in
the produced pattern).

4 Soundness of the extraction

Before proving the soundness of the extraction of logical inductive types, we need
to specify the semantics of the functional language we chose as a target for our
extraction and presented in Section 3. To simplify, we adopt a pure Kahn style

big step natural semantics (with call by value) and we introduce the following
notion of value:

v ::= c0 | C0 | ∆C | fail | <x ; e,∆> | <x ; e,∆>rec(f) | (v1, . . . , vn)

where ∆ is an evaluation context, i.e. a list of pairs (x, v), and ∆C is a set of
values of the form Cn (v1, . . . , vn). In addition, we introduce a set ∆c of tuples
of the form (cn, v1, . . . , vn, v), with n > 0.

An expression e evaluates to v in an environment ∆, denoted by the judgment
∆ ` e . v, if and only if there exists a derivation of this judgment in the system
of inference rules described in Appendix A (to save space, we do not include the
corresponding error rules returning fail).

Given I, a logical inductive type, well-typed in a context Γ , and M, the set
of modes for I and recursively for every logical inductive type occurring in I, we
introduce the translation (and evaluation) of the context Γ w.r.t. the logical in-
ductive type I and the set of modesM. A context is a set of assumptions (x : τ),
de�nitions (x : τ := t) and inductive de�nitions Ind(d : τ , Γc), where x and d
are names, τ a type, t a term and Γc the set of constructors. The translation
of Γ w.r.t. I and M, denoted by JΓ KI,M, consists in extracting and evaluat-
ing recursively each assumption, de�nition or inductive de�nition occurring in I
(thus, this translation provides an evaluation context). For assumptions, de�ni-
tions and inductive de�nitions which are not logical inductive types, we use the
regular extraction, presented in [6]. Regarding logical inductive types, we apply
the extraction described previously in Section 3.

The soundness of our extraction is expressed by the following theorem:

Theorem (Soundness). Given I = Ind(d : τ , Γc), a logical inductive type, well-

typed in a context Γ , and M, the set of modes for I and recursively for every

logical inductive type occurring in I, we have the two following cases:

� cI = aI : if JΓ KI,M ` JIKΓ,M Jt1K . . . JtcI
K . true then the statement

Γ ` d t1 . . . tcI
is provable;

� cI = aI − 1: if JΓ KI,M ` JIKΓ,M Jt1K . . . JtcI
K . v 6= fail then there exists t s.t.

JtK = v and the statement Γ ` d t1 . . . tcI
t is provable.

where cI = card(M(I)), aI is the arity of I, and t1 . . . tcI
, t are terms.

Proof. The theorem is proved by induction over the extraction. We suppose that
∆ ` JIKΓ,M Jt1K . . . JtcI

K . v, with ∆ = JΓ KI,M and either v = true if cI = aI , or
v 6= fail if cI = aI − 1. Using the de�nition of JIKΓ,M given in Section 3 and the
rules of Appendix A, this expression is evaluated as follows:

∆ ` JIKΓ,M .

{
<p1 . . . pcI

; JΓcKΓ,M,P ,∆>, if d 6∈ Γc,
<p1 . . . pcI

; JΓcKΓ,M,P ,∆>rec(d) = c, otherwise

where P = {p1, . . . , pcI
}.

The arguments are also evaluated: ∆ ` Jt1K . v1, . . . , ∆ ` JtcI
K . vcI

. Using
the de�nition of JΓcKΓ,M,P , we have the following evaluation:

∆b `


match (v1, . . . , vcI

) with
| Jc1KΓ,M
| . . .
| JcnKΓ,M
| _ → defaultI,M

 . v

where ∆b is de�ned as follows:

∆b =
{

∆, (p1, v1), . . . , (pcI
, vcI

), if d 6∈ Γc,
∆, (d, c), (p1, v1), . . . , (pcI

, vcI
), otherwise

We know that either v = true or v 6= fail (according to cI); this means that
there exists i s.t. the pattern of JciKΓ,M matches the value (v1, . . . , vcI

). Using
the de�nition of JciKΓ,M, we have to evaluate:

∆p ` JTi1 → . . . → Timi
KΓ,M,contI,M . v (1)

with ∆p = ∆b,∆i, where ∆i has the following form (by de�nition of filter∆b
):

∆i =
{

mgu∆b
(vt, (Jti1K, . . . , JticI

K)), if ti1, . . . , ticI
are linear

mgu∆b
(vt, (Jσi(ti1)K, . . . , Jσi(ticI

))), otherwise

where vt = (v1, . . . , vcI
). In addition, we have ∆p ` guard(σi) . true if

ti1, . . . , ticI
are not linear.

The reduction of our extraction language is weaker than the one de�ned for
CIC; in particular, this means that we have: given ∆ = JΓ KI,M, a term t and
a value v 6= fail, if ∆ ` JtK . v then there exists a term t′ s.t. Jt′K = v and
Γ ` t ≡ t′, where ≡ is the convertibility relation for CIC. Moreover, considering
∆ = JΓ KI,M, a term t and a value v 6= fail, if σ = mgu∆(v, JtK) then there exist
t′ and σ̄ s.t. Jt′K = v, dom(σ̄) = dom(σ), Jσ̄(x)K = σ(x) for all x ∈ dom(σ̄), and
σ̄ = mguΓ (t′, t). Using these two remarks, there exists ∆̄i as described above
s.t.:

Γ ` ∆̄i(d ti1 . . . ticI
) ≡ (d t1 . . . tcI

) (2)

Note that we can consider ∆b = ∆, since the variables pi, i = 1 . . . cI , do not
occur in I; actually, these variables are just used for the curry�cation of JIKΓ,M.
Note also that this uni�cation between (d ti1 . . . ticI

) and (d t1 . . . tcI
) may be

total or partial according to cI (if cI = aI or cI = aI − 1).
Regarding the arguments of ci, we have to consider another property: given

a context ∆a, if ∆p,∆a ` JTi1 → . . . → Timi
KΓ,M,contI,M . v then there ex-

ists a context ∆′
a ⊇ ∆a s.t. Γ ` ∆̄′

a∆̄iTij is provable for j = 1 . . .mi, and
∆p,∆

′
a ` contI,M . v. This property is proved by induction over the product

type. Using the de�nition of JTi1 → . . . → Timi
KΓ,M, we have three cases:

� j > mi: ∆p,∆a ` contI,M . v and ∆′
a = ∆.

� j ≤ mi, cij = aij :

∆p,∆a `

 if Jdij tij1 . . . tijcij K then
JTi(j+1) → . . . → Timi

KΓ,M,contI,M

else defaultI,M

 . v

Since either v = true or v 6= fail, we have ∆p,∆a ` Jdij tij1 . . . tijcij K . true
and the then branch is selected. By hypothesis of induction (over the sound-
ness theorem), this means that Γ ` ∆̄a∆̄iTij is provable. Next, we have the
evaluation ∆p,∆a ` JTi(j+1) → . . . → Timi

KΓ,M,contI,M . v and by hypoth-
esis of induction, there exists ∆′

a ⊇ ∆a s.t. Γ ` ∆̄′
a∆̄iTik is provable for

k = j + 1 . . .mi, and ∆p,∆
′
a ` contI,M . v. As ∆′

a ⊇ ∆a, Γ ` ∆̄′
a∆̄iTij is

also provable.

� j ≤ mi, cij = aij − 1:

∆p,∆a `

match Jdij tij1 . . . tijcij
K with

| Jtijaij K → JTi(j+1) → . . . → TimiKΓ,M,contI,M

| _ → defaultI,M

 . v

Since either v = true or v 6= fail, we have ∆p,∆a ` Jdij tij1 . . . tijcij
K.v′ 6= fail

and the pattern Jtijaij
K matches v′. By hypothesis of induction (over the

soundness theorem), this means that Γ ` ∆̄a∆̄iTij is provable. Next, we
have the evaluation ∆p,∆

′
p ` JTi(j+1) → . . . → TimiKΓ,M,contI,M . v, with

∆′
p = ∆a,∆m and ∆m = mgu∆p,∆a

(v′, Jtijaij
K). By hypothesis of induction,

there exists ∆′
a ⊇ ∆′

p s.t. Γ ` ∆̄′
a∆̄iTik is provable for k = j + 1 . . .mi, and

∆p,∆
′
a ` contI,M . v. As ∆′

a ⊇ ∆′
p, Γ ` ∆̄′

a∆̄iTij is also provable.

Using (1), (2) and the above property (with the empty context for ∆a), there
exists a context ∆′

i s.t. Γ ` ∆̄′
i∆̄iTij is provable for j = 1 . . .mi,

Γ ` ∆̄′
i∆̄i(d ti1 . . . ticI

) ≡ (d t1 . . . tcI
) and ∆p,∆

′
i ` contI,M . v. We distin-

guish two cases:

� cI = aI : contI,M = true and the constructor ci can be directly applied to
prove Γ ` d t1 . . . tcI

.

� cI = aI−1: we have ∆p,∆
′
i ` Jtipi

K.v. There exists a term t′ipi
s.t. Jt′ipi

K = v

and Γ ` ∆̄′
i∆̄itipi ≡ t′ipi

. Thus, Γ ` ∆̄′
i∆̄i(d ti1 . . . ticI

tipi) ≡ (d t1 . . . tcI
t′ipi

)
and the constructor ci can be applied to prove Γ ` d t1 . . . tcI

t′ipi
.

5 Implementation and optimizations

5.1 Implementation

A prototype has been implemented and integrated to the Coq [10] proof assistant.
This implementation follows what has been described in Section 3 and is plugged
into the regular extraction mechanism of Coq so that it can produce code for the

same (functional) languages, i.e. OCaml, Haskell and Scheme. As an example, let
us consider the addition predicate presented in Section 2 with an extraction to
the OCaml language [11]:

Coq < Inductive add : nat → nat → nat → Prop :=
Coq < | addO : forall n, add n O n
Coq < | addS : forall n m p, add n m p → add n (S m) (S p).

Coq < Extraction Logical add [1 2].
(∗∗ val add : nat → nat → nat ∗∗)

let rec add p0 p1 =
match (p0, p1) with
| (n, O) → n
| (n, S m) → let p = add n m in S p
| _ → assert false

This implementation should be part of the forthcoming version of Coq, and
currently, the development in progress is available on demand (sending a mail
to the authors).

5.2 Optimizations

Conclusion inputs In Section 3, we described the translation of a logical in-
ductive type when rules do not overlap, that is when the types of the conclusions
do not unify. However, we can implement some heuristics to overcome some of
these cases. Let us consider the example of the while loop, seen in Section 3:

Inductive exec : store → command → store → Prop := ...
| while1 : forall (s s1 s2 : Sigma) (b : expr) (c : command),

(eval s b true) → (exec s c s1) → (exec s1 (while b do c) s2) →
(exec s (while b do c) s2)

| while2 : forall (s : Sigma) (b : expr) (c : command), (eval s b false) →
(exec s (while b do c) s).

These two constructors overlap: the types of their conclusion are identical
up to renaming. A Prolog-like execution would try to apply the �rst rule by
computing the evaluation of the boolean expression b and matching it with the
value true. If the matching fails, the execution would backtrack to the second
rule. However, in this case, the execution is completely deterministic and no
backtracking is necessary. In fact, we can discriminate the choice between both
constructors thanks to their �rst premise. We introduce a heuristic to handle
such cases e�ciently. It requires the ability to detect common premises between
both overlapping rules and to discriminate w.r.t. syntactic exclusive premises (p
and ¬p, values constructed with di�erent constructors of an inductive type, for
example).

For the while loop example, the extracted function with the mode {1, 2} in-
volves only one case in the global pattern-matching to be able to handle correctly
the execution:

let rec exec s c = match s, c with ...
| s , while(b,c) →
(match (eval s b) with

| true → s
| false →
let s1 = exec s c in
let s2 = exec s1 (while (b, c)) in s2)

Premise outputs In the formalization, we also assumed that the outputs of the
premises do not contain computed variables. Consequently, we cannot translate
rules where constraints exist on these outputs, which is the case for the following
constructor that describes the typing of a conditional expression in a logical
inductive type named typecheck, when the mode {1, 2} is speci�ed:
Inductive typecheck : env → expr → type → Prop := ...
| if : forall (g : env) (b, e1 , e2 : expr) (t : type),

(typecheck g b bool) → (typecheck g e1 t) → (typecheck g e2 t) →
(typecheck g (if b then e1 else e2) t).

There is no di�culty to adapt the translation for such cases. Once the non-
linearity between premise outputs has been detected, we use fresh variables and
guards as follows:

let rec typecheck g e = match g, e with ...
| g , if (b, e1 , e2) →
(match typecheck g b with

| bool → let t = typecheck g e1 in
(match typecheck g e2 with
| t ' when t' = t → t
| _ → assert false)

| _ → assert false)

In the same way, it is also possible to deal with nonlinearity or symbols of
functions in the output of a premise.

6 Conclusion

In this paper, we have presented an extraction mechanism in the context of CIC,
which allows us to derive purely functional code from relational speci�cations
implemented as logical inductive types. The main contributions are the formal-
ization of the extraction itself (as a translation function) and the proof of its
soundness. In addition, a prototype has been implemented and integrated to the
Coq proof assistant, whereas some optimizations (relaxing some limitations) are
under development.

Regarding future work, we have several perspectives. First, we aim to prove
the completeness of our extraction (the mode consistency analysis should be
used in this proof). Concerning our implementation, the next step is to manage
large scale speci�cations, with, for example, the extraction of an interpreter from

a development of the semantics of a programming language (in Coq, there are
many developments in this domain). Another perspective is to adapt our mech-
anism to produce Coq functions, taking bene�t from the new facilities o�ered
by Coq to de�ne general recursive functions [10]. These new features rely on the
fact that the user provides a well-founded order establishing the termination of
the described function. Provided the mode and this additional information, we
could extract a Coq function from a logical inductive type, at least for a large
class of logical inductive types (e.g. �rst order uni�cation, strongly normalizable
calculi, etc). Finally, the mode consistency analysis should be completed by other
analyses like determinism or termination. The logical programming community
has investigated abstract interpretation to check this kind of operational proper-
ties [5]. Similar analyses could be reproduced in our case. We could also bene�t
from results coming from term rewriting system tools.

References

1. Isabelle Attali and Didier Parigot. Integrating Natural Semantics and Attribute
Grammars: the Minotaur System. Technical Report 2339, INRIA, 1994.

2. Stefan Berghofer and Tobias Nipkow. Executing Higher Order Logic. In Paul
Callaghan, Zhaohui Luo, James McKinna, and Randy Pollack, editors, TYPES,
volume 2277 of Lecture Notes in Computer Science (LNCS), pages 24�40. Springer,
December 2000.

3. Patrick Borras, Dominique Clément, Thierry Despeyroux, Janet Incerpi, Gilles
Kahn, Bernard Lang, and Valérie Pascual. Centaur: the System. In ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software Devel-
opment Environments (PSDE), volume 24(2) of SIGPLAN Notices, pages 14�24,
Boston (MA, USA), November 1988. ACM Press.

4. Catherine Dubois and Richard Gayraud. Compilation de la sémantique naturelle
vers ML. In Pierre Weis, editor, Journées Francophones des Langages Applicatifs
(JFLA), Morzine-Avoriaz (France), February 1999.

5. Manuel V. Hermenegildo, Germán Puebla, Francisco Bueno, and Pedro López-
García. Integrated Program Debugging, Veri�cation, and Optimization using Ab-
stract Interpretation (and the Ciao System Preprocessor). Science of Computer
Programming, 58(1-2):115�140, 2005.

6. Pierre Letouzey. A New Extraction for Coq. In TYPES, volume 2646 of Lecture
Notes in Computer Science (LNCS), pages 200�219, Berg en Dal (The Nether-
lands), April 2002. Springer.

7. David Overton, Zoltan Somogyi, and Peter J. Stuckey. Constraint-based Mode
Analysis of Mercury. In Principles and Practice of Declarative Programming
(PPDP), pages 109�120, Pittsburgh (PA, USA), October 2002. ACM Press.

8. Mikael Pettersson. A Compiler for Natural Semantics. In Tibor Gyimóthy, editor,
Compiler Construction (CC), volume 1060 of Lecture Notes in Computer Science
(LNCS), pages 177�191, Linköping (Sweden), April 1996. Springer.

9. Robert F. Stärk. Input/Output Dependencies of Normal Logic Programs. Journal
of Logic and Computation, 4(3):249�262, 1994.

10. The Coq Development Team. Coq, version 8.1. INRIA, November 2006.
Available at: http://coq.inria.fr/.

11. The Cristal Team. Objective Caml, version 3.09.3. INRIA, September 2006.
Available at: http://caml.inria.fr/.

12. Alberto Verdejo and Narciso Martí-Oliet. Executable Structural Operational Se-
mantics in Maude. Journal of Logic and Algebraic Programming, 67(1-2):226�293,
2006.

A Semantic rules of the extraction language

(x, v) ∈ ∆
Var∆ ` x . v fail∆ ` fail . fail

const0
∆ ` c0 . c0 constr0

∆ ` C0 . C0

∆ ` e1 . v1 . . . ∆ ` en . vn (cn, v1, . . . , vn, v) ∈ ∆c constn∆ ` cn (e1, . . . , en) . v

∆ ` e1 . v1 . . . ∆ ` en . vn Cn (v1, . . . , vn) ∈ ∆C constrn∆ ` Cn (e1, . . . , en) . Cn (v1, . . . , vn)

∆ ` e1 . true ∆ ` e2 . v2 iftrue∆ ` if e1 then e2 else e3 . v2

∆ ` e1 . false ∆ ` e3 . v3 iffalse∆ ` if e1 then e2 else e3 . v3

fun∆ ` fun x→ e . <x ; e,∆>
rec

∆ ` rec f x→ e . <x ; e,∆>rec(f)

∆ ` e1 . v1 ∆, (x, v1) ` e2 . v2 let∆ ` let x = e1 in e2 . v2

∆ ` e1 . v1 . . . ∆ ` en . vn Tuple
∆ ` (e1, . . . , en) . (v1, . . . , vn)

∆ ` e1 . <x ; e3,∆> ∆ ` e2 . v2 ∆, (x, v2) ` e3 . v3 App
∆ ` e1 e2 . v3

∆ ` e1 . <x ; e3,∆>rec(f) = c ∆ ` e2 . v2

∆, (f, c), (x, v2) ` e3 . v3 Apprec∆ ` e1 e2 . v3

∆ ` e . v filter∆(v, gpati) = ∆i

filter∆(v, gpatj) = fail, 1 ≤ j < i ∆, ∆i ` ei . vi
match∆ ` match e with | gpat1→ e1 . . . | gpatn→ en . vi

with filter∆(v, gpat) =


∆p, if gpat = pat and mgu∆(v, pat) = ∆p,
∆p, if gpat = pat when e, mgu∆(v, pat) = ∆p,

and ∆, ∆p ` e . true,
fail, otherwise

